Энгельсский технологический институт (филиал) федерального государственного бюджетного образовательного учреждения

высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Кафедра «Естественные и математические науки»

РАБОЧАЯ ПРОГРАММА

по дисциплине

Б.1.3.10.2 «Автоматизированные системы научных исследований»

направления подготовки

09.03.01 «Информатика и вычислительная техника» уровень бакалавр Профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем»

форма обучения – очная курс – 4 семестр -7,8зачетных единиц – 7 часов в неделю – 3 всего часов –252, в том числе: лекции -25 практические занятия – 0 лабораторные занятия – 59 самостоятельная работа – 168 зачет – 7 семестр экзамен – 8 семестр РГР – нет курсовая работа – нет курсовой проект –8 семестр

Рабочая программа обсуждена на заседании кафедры
« <u>О7</u> » <u>шюня</u> 20 <u>21</u> года, протокол № <u>9</u>
И.о. зав. кафедрой/А.С. Мостовой/
Рабочая программа утверждена на заседании УМКН « <u>39</u> » <u>июня</u> 20 <u>31</u> года, протокол № <u>5</u>
Председатель УМКН / А.С. Мостовой /

1. Цели и задачи дисциплины

Цель преподавания дисциплины: формирование у студентов теоретических знаний и практических навыков компьютерного моделирования с использованием современных специализированных инженерных приложений.

Задачи изучения дисциплины:

- •Познакомиться с относительно стабильными теоретическими основами некоторых современных направлений компьютерного моделирования;
- Познакомиться с практическим руководством по освоению инструментальных сред, предназначенных для построения компьютерных моделей и проведения вычислительных экспериментов.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина Б.1.3.10.2 «Автоматизированные системы научных исследований» представляет собой дисциплину по выбору учебного плана основной профессиональной образовательной программы высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» профиль «Программное обеспечение средств вычислительной техники и автоматизированных систем».

Дисциплина читается на 4-м курсе. Зачетных единиц 7. Продолжительность курса составляет 84 аудиторных учебных часов, образованных 25 часами лекций и 59 часами практических занятий. Помимо этого, 168 часов в курсе отводится под самостоятельную работу студентов.

Дисциплина «Автоматизированные системы научных исследований» имеет логическую и содержательно-методическую взаимосвязь с ранее прочитанными дисциплинами «Информатика», «Программирование», «Вычислительная математика», «Моделирование физических систем» или «Моделирование информационных процессов». Сформированные в результате освоения перечисленных дисциплин знания, умения и компетенции обучающихся, являются обязательными требованиями при освоении дисциплины «Среды инженерного проектирования и вычислительного моделирования».

Освоение дисциплины «Автоматизированные системы научных исследований» необходимо как предшествующее для дисциплин «Системы цифровой обработки сигналов» и «Автоматизированные системы научных исследований».

3. Требования к результатам освоения дисциплины

Изучение дисциплины Б.1.3.10.2 «Автоматизированные системы научных исследований» направлено на формирование у студентов следующих компетенций:

- способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1)
- способен осваивать методики использования программных средств для решения практических задач. (ОПК-9).

В результате освоения дисциплины студент должен: Знать:

элементы теории и практики компьютерного моделирования, основы объектно-ориентированного подхода к программированию.

Уметь:

планировать эксперимент и организовывать выполнение его с применением компьютерных технологий, работать с современными системами программирования, включая объектно-ориентированные.

Владеть (приобрести опыт):

программным инструментарием компьютерных технологий моделирования, языками процедурного и объектно-ориентированного программирования, навыками разработки и отладки программ не менее, чем на одном из алгоритмических процедурных языков программирования высокого уровня.

Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

планируемыми ре	зультатами осво	ения образовательн	ой программы

Код и наименование компетенции (результат освоения)	Код и наименование индикатора достижения компетенции (составляющей компентенции)
ОПК-1. Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального	ИД-1 _{ОПК-1} Знает основы высшей математики, физики, основы вычислительной техники и программирования. ИД-2 _{ОПК-1} Умеет решать стандартные профессиональные задачи с применением естественнонаучных и обще-инженерных знаний, методов математического анализа и моделирования.
исследования в профессиональной деятельности	ИД-3 _{ОПК-1} Имеет навыки теоретического и экспериментального исследования объектов профессиональной деятельности.
ОПК-9. Способен разрабатывать алгоритмы и программы, пригодные для практического применения	ИД-1 _{ОПК-9} Знает методики использования программных средств для решения практических задач. ИД-2 _{ОПК-9} Умеет использовать программные средства для решения практических задач. ИД-3 _{ОПК-9} Имеет навыки использования программных средств для решения практических задач.

Код и наименование индикатора	Наименование показателя оценивания
достижения компетенции	(результата обучения по дисциплине)
ИД-1 _{ОПК-1} Знает основы высшей математики, физики, основы	Знает основы объектно-ориентированного
вычислительной техники и	подхода к программированию.
программирования.	
ИД-2 _{ОПК-1} Умеет решать стандартные профессиональные задачи с применением естественнонаучных и обще-инженерных знаний, методов математического анализа и моделирования.	Умеет работать с современными методами программирования, включая объектно- ориентированные
ИД-3 _{ОПК-1} Имеет навыки теоретического и экспериментального исследования объектов профессиональной деятельности.	Имеет навыки исследования объектов для разработки алгоритма решения задачи
ИД-1 _{ОПК-9} Знает методики использования программных средств для решения практических задач.	Знает элементы теории и практики компьютерного моделирования.

Код и наименование индикатора	Наименование показателя оценивания						
достижения компетенции (результата обучения по дисциплине)							
ИД-20ПК-9 Умеет использовать Умеет планировать эксперимент и							
программные средства для решения	организовывать выполнение его с						
практических задач.	применением компьютерных технологий						
	Имеет навыки работы с программным						
ИД-3 _{ОПК-9} Имеет навыки использования	инструментарием компьютерных технологий						
программных средств для решения	моделирования, языками процедурного и						
практических задач.	объектно-ориентированного						
	программирования						

4. Распределение трудоемкости (час.) дисциплины по темам и видам занятий

	4. Fa	спред	целение трудоемкости (ч	iac.) дис	щишли	ны по тем	там и вид	ам заня	ГИИ
$N_{\underline{0}}$	$\mathcal{N}_{\underline{0}}$	$N_{\underline{0}}$							
Mo-	Неде	Te	Наименование	Часы					
ду-	ЛИ	МЫ	темы		Лек-	Коллок-	Лабора-	Прак-	
ЛЯ				Всего	ции	виумы	торные	тичес-	CPC
								кие	
1	2	3	4	5	6	7	8	9	10
			7	семестр)				
1	1-8	1	Среда инженерного	54	8	-	-	16	30
			проектирования и						
			вычислительного						
			моделирования						
			LabVIEW						
2	9-16	2	Среда инженерного	54	8	-	-	16	30
			проектирования и						
			вычислительного						
			моделирования						
			MatLab						
				108	16			32	60
			8	семестр)				
3	1-8	3	Модели и	71	4	-	-	13	54
			моделирование						
3	9-16	4	Технологии Data	73	5	-	_	14	54
			Mining						
				144	9	-	-	27	108
Всего	Всего				25	-	-	59	168

5. Содержание лекционного курса

№ темы	Всего часов	№ лекции	Тема лекции. Вопросы, отрабатываемые на лекции	Учебно- методическое обеспечение
1	2	3	4	5
			7 семестр	
1	2	1	Основы работы с лабораторным инструментарием на основе виртуальных приборов в графической среде	1-2

			программирования для ученых и инженеров LabVIEW	
1	2	2	Структурное программирование в среде LabVIEW	1-2
1	2	3	Обработка массивов в среде LabVIEW	1-2
1	2	4	Объектно-ориентированное программирование в среде LabVIEW	1-2
2	2	5	Пакеты прикладных программ для анализа данных, математического моделирования и генерации приложений MatLab	3-5
2	2	6	Структурное программирование в среде MatLab	3-5
2	2	7	Обработка массивов в среде MatLab	3-5
2	2	8	Объектно-ориентированное программирование в среде MatLab	3-5
			8 семестр	
3	4	1-2	Модели и моделирование: цели, классификация, этапы, адекватность, свойства, применение.	3-5
4	2	3	Методы, инструментальные средства и применение Data Mining.	3-5
4	3	4-5	Моделирование систем	3-5

6. Содержание коллоквиумов Не предусмотрены учебным планом.

7. Перечень практических занятий

№ темы	Всего часов	№ занятия	Тема практического занятия. Задания, вопросы, отрабатываемые на практическом занятии	Учебно- методическое обеспечение
1	2	3	4	5
			7 семестр	
1	4	1-2	Решение задач в LabVIEW	1-2
1	4	3-4	Структурное программирование в среде LabVIEW	1-2
1	4	5-6	Работа с массивами в среде LabVIEW	1-2
1	4	7-8	Работа с объектами в среде LabVIEW	1-2
2	4	9-10	Отработка прикладных программ для анализа данных, математического моделирования и генерации приложений MatLab	3-5
2	4	11-12	Задачи на структурное программирование в среде MatLab	3-5
2	4	13-14	Задачи на обработку массивов в среде MatLab	3-5
2	4	15-16	Объектно-ориентированное программирование в среде MatLab	3-5
			8 семестр	
3	13	1-7	Модели и моделирование: цели, классификация, этапы, адекватность, свойства, применение.	3-5
4	8	7-12	Методы, инструментальные средства и применение Data Mining.	3-5
4	6	13-16	Моделирование систем	3-5

8. Перечень лабораторных работ

Не предусмотрены учебным планом.

9. Задания для самостоятельной работы студентов

№ темы	Всего Часов	Задания, вопросы, для самостоятельного изучения (задания)	Учебно- методическое обеспечение
1	2	3	4
		7 семестр	
1	6	Выучить инструменты LabVIEW	1-2
1	8	Проработать структурное программирование в среде LabVIEW	1-2
1	8	Работа с массивами в среде LabVIEW	1-2
1	8	Объектно-ориентированное программирование в среде LabVIEW	1-2
2	4	Работа с MatLab	3-5
2	10	Структурное программирование в среде MatLab	3-5
2	8	Обработка массивов в среде MatLab	3-5
2	8	Объектно-ориентированное программирование в среде MatLab	3-5
		8 семестр	
3	54	Модели и моделирование: цели, классификация, этапы, адекватность, свойства, применение.	3-5
4	27	Методы, инструментальные средства и применение Data Mining.	3-5
4	27	Моделирование систем	3-5

10. Расчетно-графическая работа

Не предусмотрена учебным планом.

11. Курсовая работа

Не предусмотрена учебным планом.

12. Курсовой проект

Не предусмотрен учебным планом.

13. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

В процессе освоения образовательной программы у обучающегося в ходе изучения дисциплины "Автоматизированные системы научных исследований" сформируются компетенции ОПК-1, ОПК-9.

Уровни освоения компетенции

Индекс	Формулировка:			
ОПК-1	Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности			
ОПК-9	Способен осваивать методики использования программных средств для решения практических задач.			

Ступени уровней	Отличительные признаки	Техноло	Средства и технологии
освоения компетенции	_	гии	оценки
		формиро	
		вания	
Пороговый	Знает: элементы теории и	Лекции,	Практические работы
(удовлетворительный)	практики компьютерного	практи-	выполнены в
	моделирования, но не	ческие	необходимом количестве
	способен обосновать	занятия,	и в соответствии с
	необходимость	CPC	темами задания. В
	применения их на		процессе выполнения
	практике		заданий на экзамене
	Умеет: планировать		студент неоднократно
	эксперимент, но с трудом		обращался за помощью к
	может организовать		преподавателю.
	выполнение его с		40% положительных
	применением		ответов на вопросы.
	компьютерных		
	технологий		
	Владеет: программным		
	инструментарием		
	компьютерных		
	технологий		
	моделирования, языками		
	процедурного и		
	объектно-		
	ориентированного		
	программирования,		
	способен решать		
	простейшие задачи с		
	использованием		
	требуемого		
	инструментария		

Продвинутый	Знает: элементы теории	Лекции,	Практические работы	
(хорошо)	компьютерного	практи-	выполнены в	
(лереше)	моделирования,	ческие	необходимом количестве	
	обосновывает	занятия,	и в соответствии с	
	необходимость	CPC	темами задания. В	
	применения их на		процессе выполнения	
	практике, но зачастую		заданий на экзамене студент редко обращался	
	затрудняется, как это			
	сделать, выполняет этот		за помощью к	
	уровень после		преподавателю.	
	дополнительного		70% положительных	
	разъяснения		ответов на вопросы.	
	преподавателем		ответов на вопросы.	
	Умеет: планировать			
	эксперимент, организует			
	выполнение его с			
	применением			
	компьютерных			
	технологий, но			
	использует не			
	эффективные методы			
	математического анализа			
	и моделирования,			
	теоретического и			
	экспериментального			
	исследования			
	Владеет: программным			
	инструментарием			
	компьютерных			
	технологий			
	моделирования, языками			
	процедурного и			
	объектно-			
	ориентированного			
	программирования,			
	способен решать задачи			
	среднего уровня			
	сложности с			
	использованием			
	требуемого			
	инструментария			
Высокий	Знает: элементы теории и	Лекции,	Практические работы	
(отлично)	практики компьютерного	практи-	выполнены в	
	моделирования	ческие	необходимом количестве	
	Умеет: планировать	занятия,	и в соответствии с	
	эксперимент и	CPC	темами задания. В	
	организовывать		процессе выполнения	
	выполнение его с		заданий на экзамене	
	применением		студент не обращался за	
	компьютерных		помощью к	
	технологий		преподавателю.	
	Владеет: программным		90% положительных	
		L	, , , o more amiliarity	

инструментарием	ответов на вопросы.
компьютерных	
технологий	
моделирования, языками	
процедурного и	
объектно-	
ориентированного	
программирования	

Межсессионная аттестация проводится по результатам выполненных практических работ, предусмотренных учебным планом.

Рубежный контроль уровня освоения учебной дисциплины обучающимися определяется по критериям: зачтено, не зачтено.

К экзамену студенты допускаются при наличии всех практических работ, предусмотренных рабочей программой дисциплины, выполненные надлежащего качества.

Вопросы для зачета

- 1. Основы работы с лабораторным инструментарием на основе виртуальных приборов в графической среде программирования для ученых и инженеров LabVIEW
- 2. Целочисленная арифметика в среде LabVIEW.
- 3. Структурное программирование в среде LabVIEW
- 4. Обработка массивов в среде LabVIEW
- 5. Объектно-ориентированное программирование в среде LabVIEW
- 6. Пакеты прикладных программ для анализа данных, математического моделирования и генерации приложений MatLab
- 7. Целочисленная арифметика в среде MatLab
- 8. Структурное программирование в среде MatLab
- 9. Обработка массивов в среде MatLab
- 10. Объектно-ориентированное программирование в среде MatLab

Вопросы для экзамена

- 1. Моделирование как метод познания
- 2. Классификация и формы представления моделей
- 3. Методы и технологии моделирования
- 4. Информационная модель объекта
- 5. Системы компьютерного моделирования
- 6. Этапы моделирования. Адекватность модели
- 7. Методы Data Mining.
- 8. Моделированием систем

Темы курсовых проектов (работ)

- 1. Технологии MatLab проектирования графического интерфейса с использованием пользовательских форм.
- 2. Технологии MatLab организации вычислений с помощью m-файлов, matфайлов, M-сценариев.
- 3. Технологии MatLab и LabView ввода/вывода, аппроксимации и интерполяции данных.

- 4. Технологии MatLab и LabView организации циклических вычислений и обработки массивов.
- 5. Матричные операции и решение задач линейной алгебры в MatLab.
- 6. Решение обыкновенных дифференциальных уравнений в MatLab.
- 7. 2D графика, включая анимационную, в MatLab.
- 8. 3D графика, включая дескрипторную, в MatLab.
- 9. Технологии MatLab анализа и обработки экспериментальных данных.
- 10. Технологии MatLab моделирования электрических полей систем неподвижных зарядов.
- 11. Компьютерное моделирование в MatLab магнитных полей постоянных токов.
- 12. Компьютерное моделирование фрактальных объектов средствами MatLab.
- 13. Компьютерное моделирование динамики материальной точки средствами MatLab и Visual Basic for Applications.
- 14. Моделирование средствами MatLab и Visual Basic for Applications движения заряженных частиц в центральном электрическом поле.
- 15. Компьютерное моделирование динамики плоского движения материальной точки в гравитационном поле с учётом сопротивления среды, пропорционального «1-й» и «1-й и 3-й» степеней скорости движения.

14. Образовательные технологии

На лекциях используется «проблемный» подход к изложению материала: материал каждой лекции иллюстрируется примерами, рассматриваются нестандартные ситуации, требующие решения с использованием рассматриваемого материала. При этом студенты должны активно участвовать в обсуждении вопросов, выработке решений. Для самостоятельного изучения предлагается использовать электронные ресурсы.

На практических занятиях используются следующие методы обучения и контроля усвоения материала:

- выполнение практических работ предполагает решение индивидуальных задач по дисциплине в форме практических работ, по работе оформляется отчет, описывающий процесс решения задачи в соответствии с жизненным циклом программной системы;
- каждую работу студент защищает преподавателю и получает оценку за защиту, в рамках защиты обсуждаются различные варианты решения, предложенные студентами, сравнение решений, анализ возможных ситуаций, code review.

15. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

- 1. Блюм, П. LabVIEW: стиль программирования / П. Блюм; под редакцией П. Михеева. 2-е изд. Саратов: Профобразование, 2019. 400 с. ISBN 978-5-4488-0104-4. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/89869.html Режим доступа: для авторизир. пользователей
- 2. Моделирование в среде Labview : учебное пособие (лабораторный практикум) / составители П. А. Звада, Д. С. Тучина. Ставрополь : Северо-Кавказский федеральный университет, 2019. 130 с. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/92705.html— Режим доступа: для авторизир. пользователей

- 3. Черных, И. В. Моделирование электротехнических устройств в МАТLАВ. SimPowerSystems и Simulink / И. В. Черных. Саратов : Профобразование, 2017. 288 с. ISBN 978-5-4488-0085-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/63804.html (дата обращения: 02.10.2021). Режим доступа: для авторизир. пользователей
- 4. Смоленцев, Н. К. Основы теории вейвлетов. Вейвлеты в МАТLАВ / Н. К. Смоленцев. Саратов : Профобразование, 2017. 628 с. ISBN 978-5-4488-0107-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/63941.html— Режим доступа: для авторизир. пользователей
- 5. Плохотников, К. Э. Методы разработки математических моделей и вычислительный эксперимент на базе пакета MATLAB: курс лекций / К. Э. Плохотников. Москва: СОЛОН-ПРЕСС, 2017. 628 с. ISBN 978-5-91359-211-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/64926.html Режим доступа: для авторизир. Пользователей

16. Материально-техническое обеспечение

Учебная аудитория для проведения занятий лекционного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации

Укомплектована специализированной мебелью и техническими средствами обучения: 20 столов, 40 стульев; рабочее место преподавателя; маркерная доска; проектор BENQ 631, стационарный проекционный экран, системный блок (Atom2550/4Гб/500, клавиатура, мышь) подключенный в сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows 7, Microsoft Office 2010 (Word, Excel, PowerPoint), GoogleChrome.

Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля, выполнения курсового проекта.

Укомплектована специализированной мебелью и техническими средствами обучения: 12 столов, 12 стульев; рабочее место преподавателя; маркерная доска, 12 компьютеров (I 3/ 8 Гб/ 500), мониторы 24' BENQ, LG, Philips, клавиатура, мышь). Компьютеры объединены в локальную сеть с выходом в Интернет и доступом в информационно-образовательную среду ЭТИ (филиал) СГТУ имени Гагарина Ю.А., учебно-наглядные пособия, обеспечивающие тематические иллюстрации по рабочей программе дисциплины.

Программное обеспечение: Microsoft Windows10, Microsoft Office 2010 (Word, Excel, Power Point), Visual Studio; VScode, Google Chrome, Macromedia Flash, Mat Lab, LabVIEW.

Автор ж.ф.-м.н., доц. Элькин П.М.

17. Дополнения и изменения в рабочей программе

Раб	очая прогр	рамма пере	смотре	на на заседании ка	федры
«	«»20 года, протоко			а, протокол №	
	Зав. ка	афедрой		/	/
Ruscauuu	изманани	a vedana		раселации VMKC/	VMVH
Внесенные	изменени	я утвержде		заседании УМКС/	
	··	_>>	20 _	_ года, протокол Л	ν Θ
Пре	дседатель	УМКС/УМ	ЛКН	/	/